Smart Energy Systems – Issues to solve on the way to 100% RES systems

Smart Energy Systems – Issues to solve on the way to 100% RES systems

By: Neven Duić
Abstract: Transition to decarbonized energy systems is becoming more attractive with fall of investment costs of renewables and volatile prices and political insecurity of fossil fuels. The renewable energy resources are bountiful, especially wind and solar, while integrating them into current energy systems is proving to be a challenge. The limit of cheap and easy integration for wind is 20% of yearly electricity generation, while a combined wind and solar may reach 30%. Going any further asks for implementation of really free energy markets (involving day ahead, intraday and various reserve and ancillary services markets), demand response, coupling of wholesale and retail energy prices, and it involves integration between electricity, heat, water and transport systems. The cheapest and simplest way of increasing further the penetration of renewables is integrating power and heating/cooling systems through the use of district heating and cooling (which may be centrally controlled and may have significant heat storage capacity), since power to heat technologies are excellent for demand response. In countries with low heat demand water supply system may be used to increase the penetration of renewables, by using water at higher potential energy as storage media, or in dry climates desalination and stored water may be used for those purposes, and reversible hydro may be used as balancing technology. Electrification of personal car transport allows not only for huge increase of energy efficiency, but also, electric cars due to low daily use may be excellent for demand response and even for storage potential, through vehicle to grid technology. That will allow reaching 80% renewable in energy system, but the remaining 20% may be more an uphill battle without technology breakthrough. Long haul freight road transport, aviation and ship transport, as well as some high temperature industrial processes, cannot currently be easily electrified. Biomass, if not used for producing electricity and heat, may cover half of those needs, but the rest will have to come from some other technology. Inductive highways, innovative high energy density batteries and power to synthetic fuels, or so called efuels, which include hydrogen, are all very hot research issues.